掃一掃加入微信交流群
與考生自由互動(dòng)、并且能直接與專(zhuān)業(yè)老師進(jìn)行交流、解答。
關(guān)注公眾號(hào)
服務(wù)時(shí)間08:00-24:00免費(fèi)課程/題庫(kù)
微信掃一掃
●難點(diǎn)磁場(chǎng)
(★★★★★)已知偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.
●案例探究
[例1]已知奇函數(shù)f(x)是定義在(-3,3)上的減函數(shù),且滿足不等式f(x-3)+f(x2-3)<0,設(shè)不等式解集為A,B=A∪{x|1≤x≤ },求函數(shù)g(x)=-3x2+3x-4(x∈B)的最大值.
命題意圖:本題屬于函數(shù)性質(zhì)的綜合性題目,考生必須具有綜合運(yùn)用知識(shí)分析和解決問(wèn)題的能力,屬★★★★級(jí)題目.
知識(shí)依托:主要依據(jù)函數(shù)的性質(zhì)去解決問(wèn)題.
錯(cuò)解分析:題目不等式中的“f”號(hào)如何去掉是難點(diǎn),在求二次函數(shù)在給定區(qū)間上的最值問(wèn)題時(shí),學(xué)生容易漏掉定義域.
技巧與方法:借助奇偶性脫去“f”號(hào),轉(zhuǎn)化為xcos不等式,利用數(shù)形結(jié)合進(jìn)行集合運(yùn)算和求最值.
解:由 且x≠0,故0
又∵f(x)是奇函數(shù),∴f(x-3)<-f(x2-3)=f(3-x2),又f(x)在(-3,3)上是減函數(shù),
∴x-3>3-x2,即x2+x-6>0,解得x>2或x<-3,綜上得2
∴B=A∪{x|1≤x≤ }={x|1≤x< },又g(x)=-3x2+3x-4=-3(x- )2- 知:g(x)在B上為減函數(shù),∴g(x)max=g(1)=-4.
[例2]已知奇函數(shù)f(x)的定義域?yàn)镽,且f(x)在[0,+∞)上是增函數(shù),是否存在實(shí)數(shù)m,使f(cos2θ-3)+f(4m-2mcosθ)>f(0)對(duì)所有θ∈[0, ]都成立?若存在,求出符合條件的所有實(shí)數(shù)m的范圍,若不存在,說(shuō)明理由.
命題意圖:本題屬于探索性問(wèn)題,主要考查考生的綜合分析能力和邏輯思維能力以及運(yùn)算能力,屬★★★★★題目.
知識(shí)依托:主要依據(jù)函數(shù)的單調(diào)性和奇偶性,利用等價(jià)轉(zhuǎn)化的思想方法把問(wèn)題轉(zhuǎn)化為二次函數(shù)在給定區(qū)間上的最值問(wèn)題.
錯(cuò)解分析:考生不易運(yùn)用函數(shù)的綜合性質(zhì)去解決問(wèn)題,特別不易考慮運(yùn)用等價(jià)轉(zhuǎn)化的思想方法.
技巧與方法:主要運(yùn)用等價(jià)轉(zhuǎn)化的思想和分類(lèi)討論的思想來(lái)解決問(wèn)題.
解:∵f(x)是R上的奇函數(shù),且在[0,+∞)上是增函數(shù),∴f(x)是R上的增函數(shù).于是不等式可等價(jià)地轉(zhuǎn)化為f(cos2θ-3)>f(2mcosθ-4m),
即cos2θ-3>2mcosθ-4m,即cos2θ-mcosθ+2m-2>0.
設(shè)t=cosθ,則問(wèn)題等價(jià)地轉(zhuǎn)化為函數(shù)g(t)=t2-mt+2m-2=(t- )2- +2m-2在[0,1]上的值恒為正,又轉(zhuǎn)化為函數(shù)g(t)在[0,1]上的最小值為正.
∴當(dāng) <0,即m<0時(shí),g(0)=2m-2>0 m>1與m<0不符;
當(dāng)0≤ ≤1時(shí),即0≤m≤2時(shí),g(m)=- +2m-2>0
4-2
當(dāng) >1,即m>2時(shí),g(1)=m-1>0 m>1.∴m>2
綜上,符合題目要求的m的值存在,其取值范圍是m>4-2 .
●錦囊妙計(jì)
本難點(diǎn)所涉及的問(wèn)題以及解決的方法主要有:
(1)運(yùn)用奇偶性和單調(diào)性去解決有關(guān)函數(shù)的綜合性題目.此類(lèi)題目要求考生必須具有駕馭知識(shí)的能力,并具有綜合分析問(wèn)題和解決問(wèn)題的能力.
(2)應(yīng)用問(wèn)題.在利用函數(shù)的奇偶性和單調(diào)性解決實(shí)際問(wèn)題的過(guò)程中,往往還要用到等價(jià)轉(zhuǎn)化和數(shù)形結(jié)合的思想方法,把問(wèn)題中較復(fù)雜、抽象的式子轉(zhuǎn)化為基本的簡(jiǎn)單的式子去解決.特別是:往往利用函數(shù)的單調(diào)性求實(shí)際應(yīng)用題中的最值問(wèn)題.
成人高考院校專(zhuān)業(yè)指導(dǎo)專(zhuān)屬提升方案
未經(jīng)授權(quán)不得轉(zhuǎn)載,如需轉(zhuǎn)載請(qǐng)注明出處。
轉(zhuǎn)載請(qǐng)注明:文章轉(zhuǎn)載自 其它本文關(guān)鍵詞: 福州成考高起點(diǎn)數(shù)學(xué)
福州成考網(wǎng)申明:
(一)由于各方面情況的調(diào)整與變化本網(wǎng)提供的考試信息僅供參考,敬請(qǐng)以教育考試院及院校官方公布的正式信息為準(zhǔn)。
(二)本網(wǎng)注明信息來(lái)源為其他媒體的稿件均為轉(zhuǎn)載體,免費(fèi)轉(zhuǎn)載出于非商業(yè)性學(xué)習(xí)目的,版權(quán)歸原作者所有。如有內(nèi)容與版權(quán)問(wèn)題等請(qǐng)與本站聯(lián)系。聯(lián)系方式:郵件429504262@qq.com
上一篇:2022年福州成人高考高起點(diǎn)《英語(yǔ)》必考關(guān)鍵句型(9)
下一篇:2022年福州成考高起點(diǎn)數(shù)學(xué)難點(diǎn)解析(二)
優(yōu)
優(yōu)質(zhì)老師授課專(zhuān)
專(zhuān)業(yè)教學(xué)體系高
高性價(jià)比課程七
7天保障暢學(xué)無(wú)憂福州考生在線服務(wù)
專(zhuān)升本咨詢
高起專(zhuān)/本咨詢
學(xué)校專(zhuān)業(yè)咨詢
考前輔導(dǎo)咨詢
復(fù)習(xí)禮包領(lǐng)取
報(bào)名入口
掃碼立即關(guān)注公眾號(hào)
掃碼立即加入交流群
回到頂部